Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 73(2): 25, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280079

RESUMO

Macrophages constitute a major part of tumor microenvironment, and most of existing data demonstrate their ruling role in the development of anti-drug resistance of cancer cell. One of the most powerful protection system is based on heat shock proteins whose synthesis is triggered by activated Heat Shock Factor-1 (HSF1); the inhibition of the HSF1 with CL-43 sensitized A549 lung cancer cells to the anti-cancer effect of etoposide. Notably, analyzing A549 tumor xenografts in mice we observed nest-like pattern of co-localization of A549 cells demonstrating enhanced expression of HSF1 with macrophages, and decided to check whether the above arrangement has a functional value for both cell types. It was found that the incubation of A549 or DLD1 colon cancer cells with either human monocytes or THP1 monocyte-like cells activated HSF1 and increased resistance to etoposide. Importantly, the same effect was shown when primary cultures of colon tumors were incubated with THP1 cells or with human monocytes. To prove that HSF1 is implicated in enhanced resistance caused by monocytic cells, we generated an A549 cell subline devoid of HSF1 which did not respond to incubation with THP1 cells. The pharmacological inhibition of HSF1 with CL-43 also abolished the effect of THP1 cells on primary tumor cells, highlighting a new target of tumor-associated macrophages in a cell proteostasis mechanism.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Resistência a Medicamentos , Etoposídeo/farmacologia , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Fatores de Transcrição/metabolismo , Macrófagos Associados a Tumor/metabolismo
2.
Sci Rep ; 11(1): 21314, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716378

RESUMO

The release of Hsp70 chaperone from tumor cells is found to trigger the full-scale anti-cancer immune response. Such release and the proper immune reaction can be induced by the delivery of recombinant Hsp70 to a tumor and we sought to explore how the endogenous Hsp70 can be transported to extracellular space leading to the burst of anti-cancer activity. Hsp70 transport mechanisms were studied by analyzing its intracellular tracks with Rab proteins as well as by using specific inhibitors of membrane domains. To study Hsp70 forms released from cells we employed the assay consisting of two affinity chromatography methods. Hsp70 content in culture medium and extracellular vesicles (EVs) was measured with the aid of ELISA. The properties and composition of EVs were assessed using nanoparticle tracking analysis and immunoblotting. The activity of immune cells was studied using an assay of cytotoxic lymphocytes, and for in vivo studies we employed methods of affinity separation of lymphocyte fractions. Analyzing B16 melanoma cells treated with recombinant Hsp70 we found that the chaperone triggered extracellular transport of its endogenous analog in soluble and enclosed in EVs forms; both species efficiently penetrated adjacent cells and this secondary transport was corroborated with the strong increase of Natural Killer (NK) cell toxicity towards melanoma. When B16 and CT-26 colon cancer cells before their injection in animals were treated with Hsp70-enriched EVs, a powerful anti-cancer effect was observed as shown by a two-fold reduction in tumor growth rate and elevation of life span. We found that the immunomodulatory effect was due to the enhancement of the CD8-positive response and anti-tumor cytokine accumulation; supporting this there was no delay in CT-26 tumor growth when Hsp70-enriched EVs were grafted in nude mice. Importantly, pre-treatment of B16 cells with Hsp70-bearing EVs resulted in a decline of arginase-1-positive macrophages, showing no generation of tumor-associated macrophages. In conclusion, Hsp70-containing EVs generated by specifically treated cancer cells give a full-scale and effective pattern of anti-tumor immune responses.


Assuntos
Imunidade Adaptativa , Vesículas Extracelulares , Proteínas de Choque Térmico HSP70/farmacologia , Animais , Carcinoma/imunologia , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Células HEK293 , Humanos , Células Matadoras Naturais/imunologia , Melanoma Experimental/imunologia , Camundongos
3.
Pharmaceutics ; 12(5)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32366047

RESUMO

Traumatic brain injury (TBI) often causes massive brain cell death accompanied by the accumulation of toxic factors in interstitial and cerebrospinal fluids. The persistence of the damaged brain area is not transient and may occur within days and weeks. Chaperone Hsp70 is known for its cytoprotective and antiapoptotic activity, and thus, a therapeutic approach based on chemically induced Hsp70 expression may become a promising approach to lower post-traumatic complications. To simulate the processes of secondary damage, we used an animal model of TBI and a cell model based on the cultivation of target cells in the presence of cerebrospinal fluid (CSF) from injured rats. Here we present a novel low molecular weight substance, PQ-29, which induces the synthesis of Hsp70 and empowers the resistance of rat C6 glioma cells to the cytotoxic effect of rat cerebrospinal fluid taken from rats subjected to TBI. In an animal model of TBI, PQ-29 elevated the Hsp70 level in brain cells and significantly slowed the process of the apoptosis in acceptor cells in response to cerebrospinal fluid action. The compound was also shown to rescue the motor function of traumatized rats, thus proving its potential application in rehabilitation therapy after TBI.

4.
Int J Mol Sci ; 21(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861801

RESUMO

Cancer cells are known to contain high levels of the heat shock protein 70 kDa (Hsp70), which mediates increased cell proliferation, escape from programmed cell death, enhanced invasion, and metastasis. A part of Hsp70 molecules may release from cancer cells and affect the behavior of adjacent stromal cells. To explore the effects of Hsp70 on the status of monocytes/macrophages in the tumor locale, we incubated human carcinoma cells of three distinct lines with normal and reduced content of Hsp70 with THP1 monocytes. Using two methods, we showed that the cells with knock-down of Hsp70 released a lower amount of protein in the extracellular medium. Three cycles of the co-cultivation of cancer and monocytic cells led to the secretion of several cytokines typical of the tumor microenvironment (TME) and to pro-cancer activation of the monocytes/macrophages as established by elevation of F4/80 and arginase-1 markers. Unexpectedly, the efficacy of epithelial-mesenchymal transition and resistance of carcinoma cells to anticancer drugs after incubation with monocytic cells were more pronounced in cells with lower Hsp70, e.g., releasing less Hsp70 into the extracellular milieu. These data suggest that Hsp70 released from tumor cells into the TME is able, together with the development of an anti-cancer immune response, to limit the conversion of a considerable part of monocytic cells to the pro-tumor phenotype.


Assuntos
Carcinogênese/imunologia , Proteínas de Choque Térmico HSP70/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Microambiente Tumoral , Células A549 , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Transição Epitelial-Mesenquimal , Humanos , Imunidade , Macrófagos/patologia , Monócitos/patologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-30991893

RESUMO

3'-Azidothymidine (AZT) reacts with 1-propargyl-5-R-1H- and 2-propargyl-5-R-2H-tetrazoles (R = H, Me, CH2COOEt, CH2CON(CH3)2, Ph, 2-CH3-C6H4, or 4-NO2-C6H4) via the Cu(I)-catalyzed asymmetric [3 + 2] cycloaddition to give 3'-modified thymidine analogs incorporating 1H-1,2,3-triazolyl, 1H-, and 2H-tetrazolyl fragments in 41-76% yield. The structures of the obtained compounds have been elucidated by means of HRESI+-MS, 1H and 13 C{1H} NMR, and single crystal X-ray diffraction {for 3'-[4-(1H-5-N,N-dimethylaminocarbonylmethyltetrazol-1-yl)-1H-1,2,3-triazol-1-yl]thymidine 10d}. In vitro biological evaluation of the prepared compounds has been performed; they have exhibited low activity against phenotypic HIV-1899A. Moderate anti-influenza activity against influenza virus A/Puerto Rico/8/34 (H1N1) strain has been observed in the cases of 3'-(4-(1H-tetrazol-1-ylmethyl)-1H-1,2,3-triazol-1-yl)thymidine 10a (IC50 39.6 µg/mL), 3'-(4-(2H-5-ethoxycarbonyltetrazol-2-ylmethyl)-1H-1,2,3-triazol-1-yl)thymidine 11c (IC50 31.6 µg/mL), and 3'-(4-(2H-5-(4-nitrophenyl)-tetrazol-2-ylmethyl)-1H-1,2,3-triazol-1-yl)thymidine 11g (IC50 46.4 µg/mL). The tested compounds possess very low cytotoxicity towards MDCK and MT4 cells as well as tumor human cervical carcinoma HeLa and promyelocytic leukemia HL-60 cells.


Assuntos
Tetrazóis/química , Timidina/análogos & derivados , Timidina/síntese química , Triazóis/química , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antivirais/síntese química , Antivirais/farmacologia , Catálise , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Cristalografia por Raios X , Reação de Cicloadição , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Modelos Moleculares , Relação Estrutura-Atividade , Timidina/farmacologia
6.
Biochem Biophys Res Commun ; 487(3): 723-727, 2017 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-28450110

RESUMO

Huntington's disease (HD) has been recently shown to have a horizontally transmitted, prion-like pathology. Thus, the migration of polyglutamine-containing aggregates to acceptor cells is important for the progression of HD. These aggregates contain glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which increases their intracellular transport and their toxicity. Here, we show that RX624, a derivative of hydrocortisone that binds to GAPDH, prevents the formation of aggregates of GAPDH-polyglutamine excreted into the culture medium by PC-12 rat cells expressing mutant huntingtin. RX624 was previously shown to be unable to penetrate cells and, thus, its principal therapeutic action might be the inhibition of polyglutamine-GAPDH complex aggregation in the extracellular matrix. The administration of RX624 to SH-SY5Y acceptor cells that incubated in conditioned medium from PC-12 cells expressing mutant huntingtin caused an approximately 20% increase in survival. This suggests that RX624 might be useful as a drug against polyglutamine pathologies, and that is could be administered exogenously without affecting target cell physiology. This protective effect was validated by the similar effect of an anti-GAPDH specific antibody.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Hidrocortisona/administração & dosagem , Neurônios/metabolismo , Agregados Proteicos/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Líquido Extracelular , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/antagonistas & inibidores , Humanos , Hidrocortisona/análogos & derivados , Hidrocortisona/farmacocinética , Neurônios/citologia , Neurônios/efeitos dos fármacos , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...